Embedded Intelligence CAN

Software interface

Overview:

Embedded Intelligence manufactures a variety of different interfaces used to connect PC hardware to
the Control Area Network (CAN) bus. This package provides documentation of the software interface
to that hardware and examples for a number of different programming languages and development
environments.

The CAN interface hardware is accessed through the use of a device driver running on the host
operating system. It's our intention to support a wide variety of different operating systems. Presently
there are drivers available for: Windows (XP and later), Linux, and QNX real time OS. Other drivers
are likely to be available in the future.

This document describes the interface between the host software and the device driver. We have taken
pains to keep this interface as simple as possible and to keep it consistent from one OS to another. In
particular, the use of DLLs (Dynamic Link Libraries) have been avoided in favor of a more direct
connection to the device driver. This simplifies software installation as it reduces the number of
additional files that need to be installed.

Common structures:

Several data structures are common to both the C and C++ language interfaces.

CanFrame

This structure is used to represent a message transmitted on the CAN bus. The structure has the

following fields.
type

length

id

timestamp

data

This field gives the type of message and can take one of the following values
defined in the API header file:

CAN FRAME DATA: A normal data message
CAN_FRAME REMOTE: A remote request type CAN message.

CAN_FRAME ERROR: An error frame containing information about an
error that occurred on the bus.

This field gives the number of bytes of data included in the message. Legal values
range from 0 to 8.

This field gives the CAN message ID.
The CAN bus supports two different styles of CAN message; standard messages

with an 11-bit ID and extended messages with a 29-bit ID. Bit 29 of this field is
used to identify the type of message

For standard CAN messages, bit 0-10 of this field contain the message ID and bits
11-31 should be clear.

For extended messages, bits 0-28 of this field contain the ID and bit 29 must be set
to identify the message as an extended message. Bits 30-31 are not used and
should be clear.

On received messages, this field gives the time of reception. The time is in units
of microseconds.

This array of 8 bytes holds the CAN message data. CAN bus messages hold
anywhere from zero to eight bytes of data.

CanErrorInfo

This structure is used to represent an error frame received on the CAN bus. The layout of this structure
is identical to a CanFrame structure, but the meaning of the fields is slightly different.

type For error messages, this type will always be CAN_ FRAME ERROR
length This field gives the number of bytes of data included in the message.
mask This field holds a bit-mask indicating which errors were detected on the bus.

See the API header file for a list of error bit meanings.
timestamp This field gives the time of the error is in units of microseconds.

data This array holds additional information about the error.
Byte Meaning
0 Transmit error counter
1 Receive error counter

2-7 Reserved for future use

CanCardInfo

This structure holds some information about the CAN card such as firmware version number.

serial Card serial number

hwType Integer identifying the type of CAN card
fwVer Firmware version number.

bootVer Boot loader version number

fpgaver FPGA image version number

driverVer Driver version number

C Language Interface:

The C subdirectory in this package holds a very simple C language interface to the CAN card. This
interface does not require a dll, rather it directly interfaces with the device driver. Simply add files
eican.c and eican.h to your C language project file or Makefile. These source files are designed to
work in Windows as well as Linux development environments.

The following functions comprise the C language interface to the CAN driver:

void *EICanOpen(int port, int baud, int *error);

This function opens an interface to the CAN port. It should be the first function called when
interfacing to the CAN driver.

Parameters:
port This parameter is used to identify which CAN interface to access on systems with
multiple interfaces. Possible values for this parameter range from 0 to N-1 for a
system with N CAN ports installed.
baud This parameter specifies the bit rate at which CAN communications will take place.

It should be one of the values defined in the eican.h header file. For example, to
communicate at 500k bits/second, pass the value EICAN BITRATE 500000.

error This pointer can optionally be used to retrieve an error code in the event that the
function fails. If provided, the error code will be returned in the memory location
referenced by this value. It's legal to pass NULL here in which case no additional
error information will be returned.

Return:

On success, this function returns a pointer which should be passed to future function calls in the
CAN interface library. On failure, a NULL pointer is returned and an error code is copied to the
passed error parameter (if provided).

int EICanClose(void *local);
When finished using the CAN interface, this function should be called to close the interface.
Parameters:

Local The pointer value returned from EICanOpen should be passed here.

Return:

An error code is returned on failure, or O on success.

int EICanRecv(void *local, CanFrame *frame, int32_t timeout);

Receive the next CAN frame from the network.

Parameters:
local The pointer value returned from EICanOpen should be passed here.
frame A pointer to a CanFrame structure where the frame will be returned.
timeout A timeout, in milliseconds. If no message is immediately available when this
function is called, the function will block for up to this amount of time waiting for a
message. If a zero timeout is passed, the function will return immediately will an
error code if no message is available. A negative timeout is treated as infinity.
Return:

An error code is returned on failure, or 0 on success.

int EICanXmit(void *local, CanFrame *frame, int32_t timeout)

Transmit a CAN frame on the network.

Parameters:
local The pointer value returned from EICanOpen should be passed here.
frame A pointer to a CanFrame structure holding the frame to be transmitted.
timeout A timeout, in milliseconds. This timeout gives the maximum amount of time to
spend trying to add the message to the transmit queue. A successful return from this
function only indicates that the frame was added to the transmit queue, not that it's
been transmitted on the bus.
A zero timeout prevents any blocking in the event that the queue is full when the
function is called. A negative timeout is treated as infinite.
Return:

An error code is returned on failure, or O on success.

int EICanReadCardInfo(void *local, CanCardInfo *info)

Read some information about the CAN card and return it in the pass structure.

Parameters:

local The pointer value returned from EICanOpen should be passed here.

info A pointer to a CanCardInfo structure where the card information will be returned.
Return:

An error code is returned on failure, or O on success.

C++ Language Interface:

The CPP subdirectory in this package holds a simple C++ language interface to the CAN card. This
interface does not require a dll, rather it directly interfaces with the device driver. Simply add files
eican.cpp and eican.h to your C language project file or Makefile. These source files are designed to
work in Windows as well as Linux development environments.

The API defines a class called Elcan which represents the CAN interface. This class has the following
public member functions.

int EIcan::0Open(int port, int baud);

This member function opens an interface to the CAN port. It should be the first function called when
interfacing to the CAN driver.

Parameters:
port This parameter is used to identify which CAN interface to access on systems with
multiple interfaces. Possible values for this parameter range from 0 to N-1 for a
system with N CAN ports installed.
baud This parameter specifies the bit rate at which CAN communications will take place.
It should be one of the values defined in the eican.h header file. For example, to
communicate at 500k bits/second, pass the value EICAN_ BITRATE 500000.
Return:

An error code will be returned on failure. On success, this function will return zero.

int Eican::Close(void);
When finished using the CAN interface, this function should be called to close the interface.
Return:

An error code is returned on failure, or O on success.

int Eican::Recv(CanFrame *frame, int32_ t timeout);

Receive the next CAN frame from the network.

Parameters:
frame A pointer to a CanFrame structure where the frame will be returned.
timeout A timeout, in milliseconds. If no message is immediately available when this
function is called, the function will block for up to this amount of time waiting for a
message. If a zero timeout is passed, the function will return immediately will an
error code if no message is available. A negative timeout is treated as infinity.
Return:

An error code is returned on failure, or O on success.

int Eican::Xmit(CanFrame *frame, int32 t timeout)

Transmit a CAN frame on the network.

Parameters:
frame A pointer to a CanFrame structure holding the frame to be transmitted.
timeout A timeout, in milliseconds. This timeout gives the maximum amount of time to
spend trying to add the message to the transmit queue. A successful return from this
function only indicates that the frame was added to the transmit queue, not that it's
been transmitted on the bus.
A zero timeout prevents any blocking in the event that the queue is full when the
function is called. A negative timeout is treated as infinite.
Return:

An error code is returned on failure, or O on success.

int Eican::ReadCardInfo(CanCardInfo *info)
Read some information about the CAN card and return it in the pass structure.
Parameters:

info A pointer to a CanCardInfo structure where the card information will be returned.

Return:

An error code is returned on failure, or 0 on success.

	Embedded Intelligence CAN
	Software interface
	Overview:
	Common structures:
	CanCardInfo
	This structure holds some information about the CAN card such as firmware version number.
	C Language Interface:
	C++ Language Interface:

